Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 188-195.doi: 10. 13475/j.fzxb.20201201008

• Comprehensive Review • Previous Articles     Next Articles

Research progress in photocatalytic degradation of dyes using metal-organic frameworks

LI Qing1(), CHEN Linghui1, LI Dan1, WU Zhiqiang1, ZHU Wei1, FAN Zenglu2   

  1. 1. Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product(Xi'an Polytechnic University), Ministry of Education, Xi'an, Shaanxi 710048, China
  • Received:2020-12-04 Revised:2021-09-10 Online:2021-12-15 Published:2021-12-29

Abstract:

To promote the applications of metal-organic frameworks (MOFs) in dyeing wastewater treatment, research progress in using MOFs for photocatalytic degradation of dyes were reviewed. Preparation methods and high designability of their space structures were introduced, and strategies for enhancing their visible photocatalytic degradation capabilities were analyzed, including the use of organic ligands modified by chromophore to construct highly visible-light responsive MOFs. The review revealed that construction of MOFs composites with high visible-light catalytic degradation efficiency was achieved by selecting highly visible-light sensitive guest molecules and making them into the inner spaces or on the surface of MOFs for post-modification. Ideas and methods to improve the recycling ability of MOFs were discussed. The degradation performance and products of dye molecules were described and analyzed. Researches on photosensitive post-modification based on highly water stable MOFs, and exploration of the combination of this material with other traditional materials and technologies, have been suggested to be the direction for promoting the applications of MOFs in dyeing wastewater treatment.

Key words: metal-organic framework, photocatalytic degradation, dyes, visible-light responsiveness, stability, dyeing wastewater, wastewater treatment

CLC Number: 

  • TS190.2

Fig.1

Preparation methods for MOFs"

Fig.2

Deconstructing processes and topological structures of MOF-5(a) and MOF-199(b)"

Fig.3

Comparison of band gaps and light sources (UV or visible) among MOFs (a) and electron transfer pathways in dye-sensitized MOF (wide bandgap) systems (b)"

Fig.4

Terephthalic acid ligand and its modification with functional groups"

Fig.5

In-MOF composites sensitized by trichromatic photosensitizers exhibiting high efficiency and different photocatalytic degradation ability towards RB21"

Fig.6

High water stability Zr-MOF synthesized by methyl modified ligand"

Fig.7

Visible photocatalytic degradation of RB21 with highly water stable Zr-MOF composites"

Fig.8

Proposed photocatalystic degradation pathway of MB by LC-MS"

[1] KHASEVANI S G, GHOLAMI M R. Synjournal of BiOI/ZnFe2O4-metal-organic framework and g-C3N4 based nanocomposites for applications in photocatalysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(23):9806-9818.
doi: 10.1021/acs.iecr.8b05871
[2] ROJAS S, HORCAJADA P. Metal-organic frameworks for the removal of emerging organic contaminants in water[J]. Chemical Reviews, 2020, 120(16):8378-8415.
doi: 10.1021/acs.chemrev.9b00797
[3] 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2):112-118.
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of dye wastewater over Cu-organic framework[J]. Journal of Textile Research, 2018, 39(2):112-118.
[4] LI Q, FAN Z L, XUE D X, et al. Multi-dyes@MOF composite boosts highly efficient photodegradation of ultra-stubborn dye of reactive blue 21 under visible-light irradiation[J]. Journal of Materials Chemistry A, 2018, 6(5):2148-2156.
doi: 10.1039/C7TA10184H
[5] LV S W, LIU J M, WANG Z H, et al. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials[J]. Journal of Environmental Sciences, 2019, 80(6):169-185.
doi: 10.1016/j.jes.2018.12.010
[6] 李庆, 樊增禄, 张洛红, 等. 锆-有机骨架对水中染料的高选择性可循环吸附[J]. 纺织学报, 2019, 40(2):141-146.
LI Qing, FAN Zenglu, ZHANG Luohong, et al. Preferential and recyclable adsorption of dyes from water by Zr-organic skeleton[J]. Journal of Textile Research, 2019, 40(2):141-146.
[7] LI Q, CAI X B, CHEN L H, et al, Hydrolytically stable and trifunctional zirconium-based organic frameworks toward Cr2O2-7 detection, capture, and photoreduction[J]. Inorganic Chemistry, 2021, 60(5):8143-8153.
doi: 10.1021/acs.inorgchem.1c00794
[8] 朱炜, 李庆, 张萍, 等. MOF-177吸附CO2、CH4的模拟研究[J]. 纺织高校基础科学学报, 2018, 31(1):90-96.
ZHU Wei, LI Qing, ZHANG Ping, et al. Simulation study of the adsorption of CO2, CH4 by MOF-177[J]. Basic Sciences Journal of Textile Universities, 2018, 31(1):90-96.
[9] DHAKSHINAMOORTHY A, LI Z H, GARCIA H. Catalysis and photocatalysis by metal organic frame-works[J]. Chemical Society Reviews, 2018, 47(22):8134-8172.
doi: 10.1039/C8CS00256H
[10] YANG Q L, XU Q, JIANG H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15):4774-4808.
doi: 10.1039/C6CS00724D
[11] SUNDINA E, ABRAHAMSSON M. Long-lived charge separation in dye-semiconductor assemblies: a pathway to multi-electron transfer reactions[J]. Chemical Communications, 2018, 54(42):5289-5298.
doi: 10.1039/C8CC01071D
[12] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149):1230444.
doi: 10.1126/science.1230444
[13] ALMEIDA F A, KILNOWSKI J. Hydrothermal synjournal and structural characterization of a novel cadmium-organic framework[J]. Journal of Solid State Chemistry, 2004, 177(10):3423-3432.
doi: 10.1016/j.jssc.2004.05.022
[14] JHUNG S H, LEE J H, FORSTER P M, et al. Microwave synjournal of hybrid inorganic-organic porous materials: phase-selective and rapid crystallization[J]. Chemistry-A European Journal, 2006, 12(30):7899-7905.
doi: 10.1002/(ISSN)1521-3765
[15] LI Q, WU T, LAI J C, et al. Diversity of coordination modes, structures, and properties of chiral metal-organic coordination complexes of the drug voriconazole[J]. European Journal of Inorganic Chemistry, 2015(31):5281-5290.
doi: 10.1002/ejic.v2015.31
[16] FURUKAWA S, REBOUL J, DIRING S, et al. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale[J]. Chemical Society Reviews, 2014, 43(16):5700-5734.
doi: 10.1039/C4CS00106K
[17] LI M, LI D, O'KEEFFE M, et al. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle[J]. Chemical Reviews, 2014, 114(2):1343-1370.
doi: 10.1021/cr400392k
[18] 管斌斌, 李庆, 陈灵辉, 等. 基于锆-有机骨架的印染废水中Cr(VI)的荧光检测[J]. 纺织学报, 2021, 42(2):122-128.
GUAN Binbin, LI Qing, CHEN Linghui, et al. Fluorescence detection of Cr(VI) from printing and dyeing wastewater by zirconium-organic framework[J]. Journal of Textile Research, 2021, 42(2):122-128.
[19] ZHANG T, LIN W B. Metal-organic frameworks for artificial photosynjournal and photocatalysis[J]. Chemical Society Reviews, 2014, 43(16):5982-5993.
doi: 10.1039/C4CS00103F
[20] ALVARO M, CARBONELL E, FERRER B, et al. Semiconductor behavior of a metal-organic frame-work (MOF)[J]. Chemistry-A European Journal, 2007, 13(18):5106-5112.
doi: 10.1002/(ISSN)1521-3765
[21] CANIVET J, FATEEVA A, GUO Y, et al. Water adsorption in MOFs: fundamentals and applications[J]. Chemical Society Reviews, 2014, 43(16):5594-5617.
doi: 10.1039/C4CS00078A
[22] WANG Q, GAO Q Y, AL-ENIZI A M, et al. Recent advances in MOF-based photocatalysis: environmental remediation under visible light[J]. Inorganic Chemistry Frontiers, 2020, 7(2):300-339.
doi: 10.1039/C9QI01120J
[23] CHAMBERS M, WANG X, ELLEZAM L, et al. Maximizing the photocatalytic activity of metal-organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2[J]. Journal of the American Chemical Society, 2017, 139(24):8222-8228.
doi: 10.1021/jacs.7b02186
[24] MU X X, JIANG J F, CHAO F F, et al. Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation[J]. Dalton Transactions, 2018, 47(6):1895-1902.
doi: 10.1039/C7DT04477A
[25] 尚启超, 房新佐, 江海龙, 等. 半导体纳米颗粒/金属-有机骨架复合光催化体系中的位置效应[J]. 化学物理学报, 2018, 31(5):613-618.
SHANG Qichao, FANG Xinzuo, JIANG Hailong, et al. Location effect in a photocatalytic hybrid system of metal-organic framework interfaced with semiconductor nanoparticles[J]. Chinese Journal of Chemical Physics, 2018, 31(5):613-618.
[26] DHAKSHINAMOORTHY A, ASIRI A M, GARCÍA H. Metal-organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production[J]. Angewandte Chemie International Edition, 2016, 55(18):5414-5445.
doi: 10.1002/anie.v55.18
[27] QIU J, ZHANG X, FENG Y, et al. Modified metal-organic frameworks as photocatalysts[J]. Applied Catalysis B: Environmental, 2018, 231(5):317-342.
doi: 10.1016/j.apcatb.2018.03.039
[28] ZHANG X D, YANG Y, HUANG W Y, et al. g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation[J]. Materials Research Bulletin, 2018, 99(3):349-358.
doi: 10.1016/j.materresbull.2017.11.028
[29] YUAN Y P, YIN L S, CAO S W, et al. Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization[J]. Applied Catalysis B: Environmental, 2015, 168-169(6):572-576.
[30] 李庆, 管斌斌, 王雅, 等. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10):87-93.
LI Qing, GUAN Binbin, WANG Ya, et al. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of reactive dark blue K-R[J]. Journal of Textile Research, 2020, 41(10):87-93.
[31] GIBSON E A. Dye-sensitized photocathodes for H2 evolution[J]. Chemical Society Reviews, 2017, 46(20):6194-6209.
doi: 10.1039/C7CS00322F
[32] WANG C, LIU X, DEMIR N, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45(18):5107-5134.
doi: 10.1039/C6CS00362A
[33] BURTCH N, JASUJA H, WALTON K. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20):10575-10612.
doi: 10.1021/cr5002589
[34] WANG B, LV X L, FENG D W, et al. Highly Stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138(19):6204-6216.
doi: 10.1021/jacs.6b01663
[35] LI Q, FAN Z L, ZHANG L H, et al. Boosting and tuning the visible photocatalytic degradation performances towards reactive blue 21 via dyes@MOF composites[J]. Journal of Solid State Chemistry, 2019, 269(1):465-475.
doi: 10.1016/j.jssc.2018.10.025
[36] PEARSON R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85(22):3533-3539.
doi: 10.1021/ja00905a001
[37] HOWARTH A J, LIU Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3):15018.
doi: 10.1038/natrevmats.2015.18
[38] BAI Y, DOU Y, XIE L, et al. Zr-based metal-organic frameworks: design, synjournal, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8):2327-2367.
doi: 10.1039/C5CS00837A
[39] 李庆. 水稳定型In/Zr-有机骨架材料的设计、合成与光催化降解有机染料[D]. 西安: 陕西师范大学, 2017: 105-143.
LI Qing. Design, synthesis and photocatalytic degradation of organic dues by water stable In/Zr-organic frameworks materials[D]. Xi'an: Shaanxi Normal University, 2017: 105-143.
[40] FAN G D, LUO J, GUO L, et al. Doping Ag/AgCl in zeolitic imidazolate framework-8 (ZIF-8) to enhance the performance of photodegradation of methylene blue[J]. Chemosphere, 2018, 209(19):44-52.
doi: 10.1016/j.chemosphere.2018.06.036
[41] HU L X, DENG G H, LU W C, et al. Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B[J]. Chinese Journal of Catalysis, 2017, 38(8):1360-1372.
doi: 10.1016/S1872-2067(17)62875-4
[42] ARAYAABC T, CHEN C C, JIA M K, et al. Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradia-tion[J]. Optical Materials, 2017, 64(2):512-523.
doi: 10.1016/j.optmat.2016.11.047
[43] LV H L, ZHAO H Y, CAO T C, et al. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework[J]. Journal of Molecular Catalysis A: Chemical, 2015, 400(5):81-89.
doi: 10.1016/j.molcata.2015.02.007
[1] WANG Bowen, LIN Senming, YUE Xiaoli, ZHONG Yi, CHEN Huimin. Evaluation of atomization quality on fabric spray sizing [J]. Journal of Textile Research, 2021, 42(12): 90-96.
[2] ZHU Weiwei, GUAN Liyuan, LONG Jiajie, SHI Meiwu. Effects of supercritical CO2 fluid treatment time on structure and properties of diacetate fibers [J]. Journal of Textile Research, 2021, 42(12): 97-102.
[3] SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110.
[4] WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles [J]. Journal of Textile Research, 2021, 42(12): 1-14.
[5] XIAN Yongfang, WANG Hongmei, WU Minghua, WANG Lili. Application of low/non-ammonia additives in reactive deep printing [J]. Journal of Textile Research, 2021, 42(11): 89-96.
[6] JIN Hong, ZHANG Yue, ZHANG Yumei, WANG Huaping. Predicting stability of solvent in dope-dyed Lyocell solution based on molecular simulation [J]. Journal of Textile Research, 2021, 42(10): 1-7.
[7] LAI Xing, WANG Chun, XIAO Changfa, WANG Liming, XIN Binjie. Progress in preparation and application of aromatic polyamide separation membrane [J]. Journal of Textile Research, 2021, 42(10): 172-179.
[8] HE Ju, LIU Xiaohui, SU Xiaowei, LIN Shenggen, REN Yuanlin. Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants [J]. Journal of Textile Research, 2021, 42(10): 34-40.
[9] YANG Zhuo, WANG Wei. Direct electrochemical reduction of vat dyes on carbon felt electrodes [J]. Journal of Textile Research, 2021, 42(09): 104-111.
[10] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging [J]. Journal of Textile Research, 2021, 42(09): 52-58.
[11] CHEN Yali, ZHAO Guomeng, REN Lipei, PAN Luqi, CHEN Bei, XIAO Xingfang, XU Weilin. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials [J]. Journal of Textile Research, 2021, 42(08): 115-121.
[12] LIU Suo, WU Dingsheng, LI Man, ZHAO Lingling, FENG Quan. Preparation of spunlaced viscose/polyaniline composite fiber membrane and its adsorption performance [J]. Journal of Textile Research, 2021, 42(08): 122-127.
[13] ZHANG Yuhan, SHEN Guodong, FAN Wei, SUN Runjun. Preparation of aramid fiber supported BiOBr composite materials and its photocatalytic degradation of dyeing wastewater [J]. Journal of Textile Research, 2021, 42(08): 128-134.
[14] TIAN Miao, LEI Ye, WANG Yunyi, LI Jun, ZHANG Xianghui. Application of age simulation suit for research on gait stability [J]. Journal of Textile Research, 2021, 42(08): 144-148.
[15] ZHANG Tingting, XU Kexin, JIN Mengtian, GE Shijie, GAO Guohong, CAI Yixiao, WANG Huaping. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment [J]. Journal of Textile Research, 2021, 42(07): 175-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 114 -115 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 116 -118 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .